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Abstract

This paper presents closed!form expressions for the Green|s functions associated with harmonic point
sources acting within horizontally layered media[ These expressions are intended for use with the highly
e.cient Thin!Layer Method "TLM# described elsewhere\ which is now being used widely for diverse
engineering purposes[ Among the dynamic sources considered are point forces\ force dipoles "cracks and
moments#\ blast loads\ seismic double couples with no net resultant\ and bimoments "moment dipoles#[
Comparisons with known analytical solutions for homogenous media demonstrate the accuracy of the
formulation[ However\ the main _eld of application is laminated media\ for which no analytical solutions
can be obtained[ On the other hand\ it should be noted that the computational e}ort in this method does
not depend on whether the system is layered[ The resulting Green|s functions could be used to e.ciently
model elastic waves in complex media by means of the Boundary Integral Method[ Þ 0888 Elsevier Science
Ltd[ All rights reserved[
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0[ Introduction

The purpose of this paper is to present the Green|s functions for a class of dynamic point sources
acting on\ or within\ laminated media[ This objective is achieved using the Thin Layer Method
"TLM#\ which is a powerful tool for the dynamic "or static# analysis of mechanical systems whose
material properties change in only one coordinate direction[ The set of point sources considered
herein includes force dipoles "cracks\ point moments\ single and double couples#\ blast loads and
bimoments "moment dipoles#[

The origins of the TLM date back to the late sixties and early seventies\ as detailed later[ Since
then\ this semi!analytic method has found wide!ranging applications\ such as in seismic simulation\
in wave propagation through layered soils\ in vibrations of laminated "or thick# plates\ in soil!
structure and ~uid!structure interactions\ in structural acoustics "di}raction and scattering prob!
lems#\ or in the non!destructive testing of pavements[

In essence\ the method consists in a partial discretization of the wave equation\ namely one in
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the direction of layering[ Hence\ a _nite element solution is used for that coordinate direction\
while closed!form solutions "or other numerical approaches# are used for the remaining coordinate
directions[

1[ Historical background

The TLM was _rst used by Lysmer "0869# to study the propagation of seismic Rayleigh waves
in layered earth strata^ he also formulated an equation based on Rayleigh|s quotient to obtain the
group velocities and the dispersion characteristics of waves as a direct by!product of the calculation
and he observed that some modes may have negative group velocity[ Two years later\ Waas
"0861# developed a very substantial extension to Lysmer|s method and obtained the characteristic
equations directly from a variational formulation and not from a limiting process to a _nite
element mesh\ as Lysmer had done[ He applied the method extensively to problems in two
dimensions "SV!P and SH waves# and for torsional waves[ Moreover\ he developed a very e.cient
algorithm for extracting the normal modes\ studied in detail the characteristics of waves in a
homogeneous stratum and applied the method to obtain super!accurate transmitting boundaries
for _nite element representations of irregular two!dimensional soil media[ These so!called con!
sistent boundaries are equivalent to a virtual continuation of the _nite element mesh to in_nity^
they have been implemented in well!known computer codes such as FLUSH[

Concurrently with Lysmer and Waas\ the method was also independently being used by Nelson
et al[ "0860# and by Dong and Nelson "0861#\ who carried out pioneering applications of the TLM
to the vibrations of laminated orthotropic cylinders and plates[ At about the same time\ Srinivas
"0862# did analyses of composite laminates using a closely related method[ In the years immediately
following\ the TLM was applied to the formulation of transmitting boundaries in cylindrical
coordinates "Kausel\ 0863#^ to the analysis of laminated plates and soils of _nite and in_nite
dimensions "Kausel and Roe�sset\ 0866#^ and to study the dynamic behavior of circular and annular
foundations "Tassoulas\ 0870#[

Perhaps the most fundamental advance to the TLM came in the early eighties\ when Tajimi
"0879#\ Waas "0879# and Kausel "0870# independently applied the method to obtain the Green|s
functions for point forces acting on "or within# a layered medium[ Of these three\ the most well
known came to be the latter\ since it provided the most general framework for handling loads with
arbitrary spatial!temporal characteristics via Fourier and Hankel transforms and included detailed
expressions for the consistent strains and stresses[ Based on this work\ Kausel and Peek "0871a#
presented the Green|s functions for point forces which now lie at the heart of numerous programs
and procedures for the analysis of wave motion in layered media "e[g[ PUNCH\ SASSI\ SASW#^
they also applied these functions in the context of a boundary integral formulation to study
laminates with irregularities\ such as cavities or inclusions "Kausel and Peek\ 0871b#[ These Green|s
functions were later extended to allow the modeling of layered media over elastic halfspaces "Seale\
0874^ Kausel and Seale\ 0876^ Seale and Kausel\ 0878#[

More recently\ the TLM was extended to study the propagation of waves in ~uids "Lofti et al[\
0876^ Tan\ 0878^ Tsai et al[\ 0889#^ to assess the seismic response of earth dams "Bougacha and
Tassoulas\ 0880#^ to evaluate the response of coupled solidÐ~uid systems "Ghibril\ 0881#^ and to
study problems of wave propagation in poroelastic media "Bougacha et al[\ 0882#[ In the last few
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years\ the algorithm was reformulated and extended to laterally inhomogeneous media by Geller
and Ohminato "0883#\ Geller and Hatori "0884#\ who called it the DSM method[

2[ Green|s functions for point forces

Consider a horizontally layered\ laterally homogeneous\ elastic medium described in cylindrical
coordinates r\ u\ z\ with associated unit base vectors r¼\ t¼\ k¼ [ The material properties change only
with depth[ The medium consists of N layers and it is acted upon by a harmonic load at some
arbitrary elevation z?[

Let u\ v\ w � displacement components at elevation z for a horizontal point load acting at
elevation z? and U\ W � displacement components for a vertical point load at these same elevations[
From Kausel and Peek "0871a#\ the Green|s functions for these loads are]

"a# Horizontal point load

g¹x"r\ u\ z# � u cos ur¼−v sin ut¼¦w cos uk¼ "0#
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0
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in which fl
x\ fl

z are the horizontal and vertical components of the lth SV!P "{Rayleigh|# mode and
fl

y are the components of the lth SH "{Love|# mode[ Each of these normal modes of wave
propagation is associated with a "generally complex# wavenumber "eigenvalue# kl[ Also\ the
H "1#

j "kr# are second Hankel functions of order j[ Notice that the Green|s functions are known
explicitly in the spatial domain[

"b# Vertical point load]

g¹z"r\ z# � Ur¼¦Wk¼ "2#

U �
0
3i

s
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These expressions will be used as building blocks to obtain the Green|s functions for dipoles\ blast
loads and bimoments[
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Fig[ 0[ Force dipole[

3[ Force dipoles

Let g¹ "r¹# be the Green|s function for a point load P in some direction "say\ horizontal# and apply
two such loads in opposite directions at some small distance 1a apart "Fig[ 0#[ De_ne a¹ � aa¼ to be
a vector perpendicular to these forces\ of magnitude equal to their half!distance a[ These forces
cause a displacement _eld

u¹ � Pðg¹ "r¹−a¹#−g¹ "r¹¦a¹#Ł "4#

Expand next the Green|s functions in Taylor series]

g¹ "r¹2a¹# � g¹ "x2Dx\ y2Dy\ z2Dz#

� g¹ "x\ y\ z#2$
1g¹

1x
Dx¦

1g¹

1y
Dy¦

1g¹

1z
Dz%¦= = =

� g¹ "r¹#2a¹ = 9g¹¦O"a1# "5#

Combining eqns "4# and "5# and de_ning the strength M of the dipole to be M � 1Pa\ one obtains
in the limit a : 9 the Green|s function for a simple point dipole as
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u¹ � −Ma¼ = 9g¹ "6#

In general\ if the Green|s function is expressed in cylindrical coordinates as

g¹ � u 0
cn

sn1 r¼¦v 0
−sn

cn 1 t¼¦w 0
cn

sn1 k¹ "7#

in which cn � cos nu and sn � sin nu\ then the gradient 9g¹ can be shown to be given by

9g¹ � r¼ $
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1r 0

−sn

cn 1 t¼¦
1w
1r 0

cn

sn1 k¹%
¦t¼ $

nu−v
r 0

−sn

cn 1 r¼¦
u−nv

r 0
cn

sn1 t¼¦
nw
r 0

−sn

cn 1 k¹%
¦k¼ $

1u
1z 0

cn

sn1 r¼¦
1v
1z 0

−sn

cn 1 t¼¦
1w
1z 0

cn

sn1 k¹% "8#

In this expression\ the products r¼r¼\ r¼t¼\ etc[ must be interpreted as dyads[
Figure 1 shows the nine simple dipoles\ chosen so that the forces in the _rst octant are always

pointing in the positive direction^ the directions of the dipoles are then de_ned by the right!hand
rule[ Applying eqn "8# to the Green|s functions for horizontal and vertical loads given by eqns "0#
and "2# and deciding on the appropriate unit direction a¼ from Fig[ 1 "where it coincides with one
of the Cartesian base vectors i¼\ j¼\ k¼ \ namely i¼� r¼ cos u−t¼ sin u\ j¼� r sin u¦t¼ cos u\ or k¼ � k¼ #\ one
obtains after some algebra the displacements for both crack sources "Mxx\ Myy\ Mzz# and for single
couples "Mxy\ Mxz\ etc[#[ The results are summarized in Table 0[ The Green|s functions for dipoles
are constructed from this table multiplying the coe.cients in a given column by the expressions in
the _rst column and adding the result[ For example\ the Green|s function for a crack Mxx is

u¹ � −
Mxx

1 60
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Evaluation of the equations derived from Table 0 by means of the Thin Layer Method requires
appropriate expressions for the derivatives with respect to r and z for the terms in the _rst column[
These are obtained from eqns "1# and "3#^ the _nal results are]
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Fig[ 1[ The nine force dipoles[
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Table 0
Coe.cients for simple dipoles "cracks and single couples# cn � cos nu\ sn � sin nu

−0
1
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1
Mxy −Mxz −0
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1
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As for the vertical derivatives\ they are obtained from eqns "1aÐc# substituting in the summations
the _rst factors\ fl

x"z#\ fl
y"z#\ fl

z"z# with their corresponding partial derivatives[ Since the medium
has been discretized in the vertical direction\ these derivatives must be obtained by consideration
of the interpolation polynomials N"z# on which the formulation is based[ When using a linear
expansion\ these derivatives are discontinuous across the layer interfaces\ in which case it is best
to evaluate the Green|s functions only at the center of the layers[ On the other hand\ if quadratic
"or higher# expansion is used\ the Green|s functions remain continuous across the layer interfaces[

Denote with zt\ zb the elevations of the top and bottom interfaces\ respectively\ of the thin layer
containing z\ so that h � zt−zb is the thickness of that layer[ Let z � "z−zb#:h be the dimensionless
vertical coordinate[ The isoparametric interpolation polynomials\ their derivatives and the modal
values are then as follows]

"a# Linear expansion

N � ðz "0−z#Ł "01a#

1

1z
N �

0
h

ð0 −0Ł "01b#

fl
x"z# � N 6

ftl
x

fbl
x 7 "01c#

1fl
x"z#
1z

�
ftl

x−fbl
x

h
"01d#

in which ftl
x � fl

x"zt# and fbl
x � fl

x"zb# are the values of fl
x at the top and bottom interfaces\

respectively\ of the layer which contains the observation point at depth z[ Similar expressions can
be written for fl

y"z#\ fl
z"z# and their derivatives[

"b# Quadratic expansion

N � ð1z1−z 3z−3z1 0−2z¦1z1Ł "02a#

1

1z
N �

0
h

ð3z−0 3−7z 3z−2Ł "02b#
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Fig[ 2[ Pure moments[

fl
x"z# � N 8

ftl
x

fml
x

fbl
x
9 "02c#

in which fml
x refers to the intermediate nodal interface[

As an example of the above\ the derivative of U ðeqn "3a#Ł with respect to z when using a linear
expansion\ is given by

1U
1z

�
0
3i

s
1N

l�0

ftl
x−fbl

x

h
fl

z"z?#H "1#
0 "klr# "03#

Similar expressions can be written for all other derivatives of the Green|s functions by simple
inspection of eqns "1aÐc# and "3b#[ As for the modal values at the elevation of the load ði[e[
fl

x"z?#\ etc[Ł\ they are again obtained applying eqns "01c# or "02c#\ but using the modal values that
correspond to the layer containing the load[

4[ Pure moments "double couples#

The Green functions for pure torsional and rocking moments are obtained combining the
Green|s functions for two single couples of equal strength "Fig[ 2#]

Mx � Mzy−Myz My � Mxz−Mzx Mz � Myx−Mxy "04#

This results in the following expressions]

"a# Rocking about x]

u¹ �
Mx

1 60
1u
1z

−
1U
1r 1 sin ur¼¦0

1v
1z

−
U
r 1 cos ut¼¦0

1w
1z

−
1W
1r 1 sin uk¼7 "05#

in which the terms are obtained from eqns "00#[

"b# Rocking about y]



E[ Kausel : International Journal of Solids and Structures 25 "0888# 3614Ð36313623

Fig[ 3[ Seismic moments[
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1 60
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U
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−
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1w
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"c# Torsion about z]

u¹ �
Mz

1 0
u−v

r
−

1v
1r1t¼�

Mz

1r 0u−
1"rv#
1r 1t¼ "07#

5[ Double couples "seismic moments# with no net resultant

The three seismic moments are shown in Fig[ 3^ their Green|s functions are obtained by simple
addition of the Green|s functions for the corresponding single couples[ For example\ the Green|s
function for a seismic moment of intensity M9 " � Mxy � Myx# and horizontal polarization "i[e[
vertical axis# is

u¹ � −M9 60
1u
1r

−
u−v

r 1 sin 1ur¼¦0
1v
1r

¦
u−v

r 1 cos 1ut¼¦0
1w
1r

−
w
r1 sin 1uk¼7 "08#

in which the individual terms are again obtained from eqn "00#[

6[ Bimoments

These are moments of pure moments and have no net resultant[ Their Green|s functions are
obtained in the same fashion as those for single couples\ except that the functions for moments
are used in place of those for forces[ Of the nine possible bimoments\ we consider here only the
torsional bimoment "Fig[ 4#\

u¹ � −B 6
0
r 0

1v
1r

−
u−v

r 1 cos ur¼−
1

1r 0
1v
1r

−
u−v

r 1 sin ut¼7 "19#

which is obtained by substituting into eqn "6# the Green|s functions for a torsional moment ðeqn
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Fig[ 4[ Bimoment "moment dipole#[

"07#Ł and assuming a strength B � 1Mza[ This bimoment is of particular interest here\ because
together with the Green|s functions for a horizontal point load ðeqn "1#Ł and for a rocking point
moment ðeqn "06#Ł\ it constitutes the third independent solution available for a point source
producing Green|s functions with azimuthal variation n � 0 "i[e[ with variation cos u\ sin u#^ when
considered in combination\ these three cases _nd interesting applications in boundary element
solutions and in the formulation of transmitting boundaries[

7[ Blast loads

To obtain the Green|s functions for blast loads\ we consider an unbounded\ homogeneous elastic
solid containing a small spherical cavity of radius a[ Within this cavity acts a harmonically
oscillating pressure with amplitude p[ Hence\ the net force acting on an elementary area dA with
position vector a¹ � an¼ on the cavity|s wall "with unit outward normal n¼\ see also Fig[ 5# is]

dF¹ � p dAn¼ � dFxi¼¦dFyj¼¦dFzk¼

� p dA"nxi¼¦nyj¼¦nzk¼ # "10#

where dFx\ dFy\ dFz are the Cartesian components of the force[ Next\ consider an external point in
the medium with position vector r¹ relative to the center of the cavity^ the displacements caused by
the elementary forces at that point are

du¹ � p dAðnxg¹x"r¹−a¹#¦nyg¹y"r¹−a¹#¦nzg¹z"r¹−a¹#Ł "11#

in which g¹x\ g¹y\ g¹z are the Green|s functions for unit loads in directions x\ y\ z\ respectively\ whose
argument r¹−a¹ is the distance from the point of application of the force to the observation point[
Expanding these functions in Taylor series\ carrying out a straightforward integration over the
entire cavity surface\ de_ning a source strength S � 3

2
pa2p and considering the limit of an in_ni!

tesimal cavity a : 9\ one obtains

u¹ � −Sði¼ = 9g¹x¦j¼ = 9g¹y¦k¼ = 9g¹zŁ "12#
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Fig[ 5[ Blast load[

which provides an initial relationship between the Green|s functions for point loads and those for
blast loads[ As written\ however\ eqn "12# does not yet provide the correct Green|s functions for
blast loads\ because the functions g¹x\ g¹y\ g¹z used in its derivation are those for the continuum and
do not consider the presence of the in_nitesimally small cavity[ A more sophisticated analysis
shows that the removal of the tiny particle _lling the equally small cavity produces an additional
factor in front of eqn "12#[ When this aspect is taken into account\ it can be shown "Kausel\ 0887#
that the true relationship is

u¹ � −
2"l¦1m#

3m
Sði¼ = 9g¹x¦j¼ = 9g¹y¦k¼ = 9g¹zŁ "13#

in which l\ m are the Lame� constants of the layer containing the blast source[
Substituting eqns "1# and "3# into this expression\ one obtains after some algebra

u � −
2"l¦1m#

3m
S 60

1u
1r

¦
u−v

r
¦

1U
1z 1r¼¦0

1w
1r

¦
w
r

¦
1W
1z 1k¼7 "14#

in which the individual terms are obtained\ as before\ from eqns "00#[

8[ Examples of application

We consider in this section a series of numerical benchmark experiments in which we compare
numerical results obtained with our program PUNCH\ which implements the TLM\ with the exact
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Fig[ 6[ Torsional point load in an in_nite space[ Response at r � 0[9\ z � 9[1514[

solutions for those same problems[ The purpose of these experiments is to demonstrate the accuracy
of the formulas for the TLM presented in this paper and to test the correctness of the program[

As a _rst example\ consider an in_nite\ homogeneous space subjected to a torsional point load[
The exact solution to this problem is

vt "r\ z\ v# �
Mt cos 8

7pmR1
"0¦ib9# e−ib9 "15#

in which vt is the tangential displacement\ Mt � torsional moment\ R � zr1¦z1\ cos 8 � r:R\
b9 � vR:b\ v � the frequency "in rad:s#\ m � shear modulus and b � shear wave velocity[ Figure
6 shows a comparison at one point between the exact solution "solid lines# and the response
obtained with the thin layer method "dashed lines#\ assuming unit material properties and a
damping ratio z � 9[9990[ In the discrete case\ the full space was modeled with a homogenous
_nite layer of unit depth "subdivided into 39 layers of thickness 9[914 each#\ to which paraxial
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Fig[ 7[ Torsional point load on the surface of a stratum[ Response at r � 0[9\ z � 9[9 "surface#[

boundaries were added at the top and bottom interfaces to simulate the in_nite medium^ the
torsional load was placed at the origin in the middle of the 10st sublayer "i[e[ 9[9014 units below
the geometric center of the model#[ The output point shown is located halfway between the level
of the source and the boundaries\ at an epicentral distance equal to the depth of the discrete model[
As can be seen\ the agreement is nearly perfect[ Clearly\ the computational e}ort required for this
example using the TLM "less than 1 min for 049 frequencies on a Gateway 019 MHz PC# would
have been exactly the same if each of the layers had been made of di}erent materials "including
transverse anisotropy#\ but a benchmark would have been lacking[ It is worth pointing out that
this example not only demonstrates the correctness of the torsional point load solution implemented
in the TLM\ but also demonstrates the accuracy of the paraxial boundaries used[ Other points at
various distances from the source produced equally good results[

Next\ we tested the solution for a torsional point load acting at the surface of a homogeneous
stratum\ using the same model as before but with free and _xed boundaries at the top and bottom\
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Fig[ 8[ Blast source in a homogeneous in_nite space[ Horizontal response at r � 0[9\ z � 9[15[

respectively[ Since this problem still involves only SH waves\ the exact solution can be derived
from eqn "15# by the method of images\ which yields

vt "r\ z\ v# �
Mtx
3pm

s
�

j� −�

"−0#j "0¦ib9j# e−ib9j

R2
j

"16#

with zj � 1hj¦z\ Rj � zx1¦z1
j and b9j � vRj:b[ A comparison between the discrete and exact

solutions are shown in Fig[ 7^ the agreement is so good that di}erences cannot be resolved at the
scale of the plot[

As a third case\ we consider a pulsating in_nitesimal cavity at the center of an in_nite\ homo!
geneous medium\ using the same TLM model as for the torsional point load[ This problem is
interesting because\ while the exact solution involves only P "or compressional# waves\ the TLM
solution includes all wave types "particularly as a result of the paraxial boundaries#^ remarkably\
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Fig[ 09[ Horizontally polarized seismic double couple in an in_nite space[ Radial response at r � 0[9\ z � 9[9\ u � 34>[

the discrete model still produced a decoupled wave _eld in this case[ The exact solution for the
radial displacement produced by a pulsating point source "which are spherically symmetric# is

ur �
2S

05pmR1
"0¦ia9# e−ia9 "17#

with S being the source strength\ a9 � vR:a\ a � P!wave velocity\ R � zr1¦z1[ Figure 8 shows
a comparison of the displacements obtained using the TLM and those of formula "17#[ Once more\
the agreement is excellent and again\ the model could have been run with di}erent material
properties\ without added e}ort[

As a _nal example\ we consider a horizontally polarized seismic double couple in an in_nite\
homogeneous space\ once more using the paraxial boundaries at the upper and lower surfaces of
the model[ Instead of using an exact formula for this case\ however\ we computed the reference
solution using the well known Stokes| tensor for a point force\ simulating the double couple with
four forces appropriately placed in close proximity[ Figure 09 shows the results of this exercise
and once more the agreement is excellent[
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09[ Conclusion

In this paper\ we presented formulas for the application of the Thin Layer Method "TLM# to
the solution of point sources of various types acting within "or on# horizontally layered media[
While the formulas presented have general validity and could even be used for laminated media
with transverse anisotropy\ examples show that they produce accurate results for benchmark
problems with known solution[ Of course\ the main _eld of application of these formulas is for
complex media that are not amenable to analytical treatment\ which can be solved by means of
the TLM with the same computational e}ort required for homogeneous media[
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